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Abstract. Single-pass free-electron lasers constitute an example of systems with long-range interactions.
The light-particle interplay leading to the power growth and successive relaxation towards a quasi-
stationary state is governed by the Vlasov equation. A maximum entropy principle inspired to Lynden-
Bell’s theory of “violent relaxation” for the Vlasov equation can be invoked to analytically characterize
the behaviour of the saturated system. In particular, we here concentrate on the case of coherent harmonic
generation obtained from an externally seeded free-electron laser and provide a simple strategy to predict
the laser intensity as well as the final electron-beam energy distribution.

PACS. 05.45.-a Nonlinear dynamics and chaos

1 Background

Physical systems are constituted by interacting compo-
nent elements, e.g. point particles or atoms. In presence
of short-range couplings, every element is solely sensitive
to the adjacent environment, being therefore uniquely sub-
jected to the interaction with local neighbors. Conversely,
when long-range forces are to be considered, a global net-
work of connections is active, each element feeling the di-
rect influence of every other constitutive unit. This cru-
cial distinction is responsible for the enhanced degree of
complexity in the treatment of long-range systems when
compared to short-range ones. As a consequence, basic
concepts in physics, notably in the framework of equilib-
rium statistical mechanics, have been rigorously developed
preferentially with reference to the latter case. The po-
tential interest of such tools is however very broad since
for all fundamental interactions in nature (with the ex-
ception of gravity), screening mechanisms manifest, re-
sulting in effective short-range couplings. For this reason,
until quite recently, it has essentially only been in the con-
text of astrophysics and cosmology that the very specific
and difficult features of long-range interactions have been
tackled. Recently, however, a growing number of physical
laboratory systems have emerged in which the interac-
tions are truly long-range, e.g. unscreened Coulomb in-
teractions, vortices in two-dimensional fluid mechanics,
wave-particle systems relevant to plasma physics and Free-
Electron Lasers (FEL’s). These developments gave new
impetus [1] to attempts aiming at describing the pecu-
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liar behaviour of long-range interacting systems, in a con-
text where, in contrast to astrophysics, laboratory exper-
iments are possible. Moreover, a number of paradigmatic
“toy models” have been proposed that provide the ideal
ground for theoretical investigations. Among others, the
Hamiltonian Mean Field (HMF) model [2] is nowadays
widely analyzed because of its intrinsic simplicity.

Single-pass FEL’s are light sources producing pow-
erful (GW) coherent radiation in a wide spectral range
(i.e., from infra-red to hard X-rays). They constitute a
genuine example of systems with long-range interactions,
where the interplay between collective (wave) and indi-
vidual (particles) degrees of freedom is well known to be
central. This interplay being essentially non dissipative,
its prototype is described by a self-consistent Hamilto-
nian [3], which provides a clear and intuitive picture of
the basic mechanisms that drive the process of light am-
plification and saturation. In this respect, FEL’s provide
a very general experimental ground to investigate the uni-
versal features that characterize systems with long range
interactions. This includes relaxation to long lived quasi-
stationary states (QSS’s) before the final thermodynami-
cal equilibrium is reached.

Recently, in [4] and [5] we demonstrated that a max-
imum entropy principle inspired to Lynden-Bell’s theory
of “violent relaxation” for the Vlasov equation [6] allows
to satisfactorily explain numerical simulations performed
for a FEL operated in Self Amplified Spontaneous Emis-
sion (SASE) [7] configuration and for the HMF model. A
SASE FEL relies on the nonlinear interaction between an
un-bunched electron beam and the spontaneous radiation
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Fig. 1. Schematic layout of the CHG scheme. The electron
beam, coming from left, passes through a first undulator, called
modulator; the interaction with a synchronized seeding signal
(provided, e.g., by a laser) produces a modulation of the elec-
tron energy. Then, the beam propagates through a dispersive
section, where the energy modulation is converted in spatial
modulation (micro-bunching). Finally, in the last undulator,
called radiator, the micro-bunched electron beam emits coher-
ently.

it emits when guided by the static and periodic magnetic
field generated by an undulator. An alternate configura-
tion to SASE, named in the following Coherent Harmonic
Generation (CHG), is the one in which the radiation is
produced by electrons pre-bunched by an external source,
e.g. a laser field [8]. In this paper we generalize to CHG
the results presented in [4] for the restricted case of SASE.

The paper is organized as follows: in Section 2 we in-
troduce the basic concepts on which single-pass FEL’s rely
(with particular concern to CHG) and we shortly review
the self-consistent Hamiltonian formulation [3] that pro-
vides a minimalist framework to address the study of the
FEL dynamics. Section 3 is devoted to presenting the max-
imum entropy principle and its application to the case un-
der inspection. Section 4 compares numerical simulations
for the CHG FEL to theoretical predictions. Finally, in
Section 5 we draw conclusions and outline perspectives.

2 Introduction to the Free Electron Laser
physics

In a single-pass FEL, the physical mechanism responsible
for the light emission and amplification is the interaction
between a relativistic electron beam, a magnetostatic pe-
riodic field generated by an undulator and an optical wave
co-propagating with electrons. Two different schemes can
be distinguished, depending on the origin of the optical
wave which is used to initiate the process. In the SASE
configuration, the initial seed is provided by the sponta-
neous emission of the electron beam which is forced by
the undulator field to follow a curved trajectory. The seed
is then amplified all along the undulator until the laser
effect is reached. The SASE radiation produces tunable
radiation at short (X-ray) wavelengths with several GW
peak power and excellent spatial mode. An alternate ap-
proach to SASE is CHG, which is capable of producing
temporally coherent pulses. A schematic layout of CHG is
shown in Figure 1. In this case, the initial seed is produced
by an external light source, e.g. a laser. The light-electron

interaction in a short undulator, called modulator, im-
poses an energy modulation on the electron beam. The
modulator is tuned to the seed wavelength λ. The en-
ergy modulation is then converted into a spatial density
modulation (bunching) as the electron beam transverses a
dispersive section, i.e. a region of space where a constant
magnetic field induces different paths for electrons hav-
ing different energies. Figure 2 shows the evolution of the
electron-beam phase space (i.e. energy vs. electrons’ phase
in the undulator plus radiator field) from the entrance of
the modulator to the exit of the dispersive section. Finally,
in a second undulator, called radiator and tuned at one of
the harmonics of the seed frequency, the micro-bunched
electron beam emits coherent radiation at the harmonic
wavelength.

In the following we introduce the model that can be
used to address the study of a single-pass FEL, both in
the modulator and radiator of a CHG scheme. By putting
forward the hypothesis of one-dimensional (longitudinal)
motion, small particle energy spread and monochromatic
radiation, the system evolution during the propagation
inside each undulator is described by the following set of
equations (N being the number of electrons):

dθj

dz̄
= pj , (1)

dpj

dz̄
= −Aeiθj −A∗e−iθj , (2)

dA
dz̄

=
1
N

∑

j

e−iθj , (3)

where z̄ = 2kuρzγ
2
r is the re-scaled longitudinal co-

ordinate, which plays the role of time. Here, ρ =
(awωp/4cku)2/3/γr is the so-called Pierce parameter, γr

the resonant energy, ku the wave vector of the undula-
tor, ωp = (e2n̄/mε0)1/2 the plasma frequency, n̄ being the
electron number density, c the speed of light, e and m re-
spectively the charge and mass of one electron. Further,
aw = eBw/(kumc

2), where Bw is the rms undulator field.
Introducing the wavenumber k = 2π/λ, where λ is the
wavelength of the FEL radiation, the phase θ is defined by
θ = (k+ ku)z −ωt, being ω = kc the radiation frequency;
its conjugate momentum reads p = (γ − 〈γ0〉)/(ρ〈γ0〉),
being 〈γ0〉 the mean energy of the electrons at the undu-
lator’s entrance. The complex amplitude A = Ax + iAy

represents the scaled field, transversal to z. We have as-
sume here 〈γ0〉 = γr (“perfect tuning” condition). The
above system of equations can be deduced from the Hamil-
tonian

H =
N∑

j=1

p2
j

2
+ 2

√
I

N

N∑

j=1

sin(θj − ϕ), (4)

where the intensity I and the phase ϕ of the wave are
defined by A =

√
I/N exp(−iϕ). Here the canonically

conjugated variables are (pj , θj), for 1 ≤ j ≤ N , and
(I, ϕ). Besides the “energy” H , the total momentum
P =

∑
j pj + I is also a conserved quantity. Let us fi-

nally define the bunching parameter for the nth harmonic



F. Curbis et al.: Maximum entropy principle and coherent harmonic generation using 529

0 1 2 3 4 5 6
4

2

0

2

4

E
n
er

g
y

0 1 2 3 4 5 6
4

2

0

2

4

Phase
0 1 2 3 4 5 6

4

2

0

2

4

E
n

er
g

y

E
n

er
g

y

PhasePhase

INCOHERENT 
ENERGY SPREAD

TOTAL 
ENERGY
SPREAD

SEPARATRIXa) b) c)

Fig. 2. Electron-beam phase space at the entrance a) and at the exit b) of the modulator; c) phase space at the exit of the
dispersive section. In a), the thickness of the distribution corresponds to the (initial) incoherent energy spread of the electron
beam. In c) the gap between the boundaries of the separatrix corresponds to the energy modulation induced by the seed-electron
interaction (see Fig. 1).

(n = 1, 2, 3, ... being an integer number) of the optical
wave as bn(z̄) =

∑
exp(inθi(z̄))/N := 〈exp(inθ(z̄))〉. The

latter provides a quantitative measure of the degree of spa-
tial compactness of the particles distribution at the scale
of the wavelength λ/n.

More specifically, in the modulator, A represents the
(high power) field provided by the external seed. As shown
in Figure 2, the seed-electron interaction induces a coher-
ent modulation, ∆γ, of the electron-beam energy, which
combines to the initial incoherent energy spread σγ . At
the modulator entrance electrons are randomly distribued
in phase and, as a consequence, the initial bunching is
virtually zero (not exactly zero, due to granularity). Sub-
stantial bunching at the fundamental and higher harmon-
ics is created inside the dispersive section, where energy
modulation is converted into spatial density modulation.
Indeed, performing a Fourier analysis of the spatial beam
distribution at the end of the dispersive section one finds
the following harmonic (i.e., bunching) coefficients [9]:

|bn| = |〈exp(inθ)〉| = exp
[
−1

2
n2σ2

γd
2

]
Jn [nd∆γ] , (5)

where d is the strength of the dispersive section (that is
directly related to the peak value of the static magnetic
field) and Jn stands for the nth order Bessel function.
Significant bunching is obtained if d∆γ � 1. Conversely,
the first exponential factor in the previous equation shows
that the incoherent energy spread σγ erases the bunching
when n2σ2

γd
2 > 1. Hence, in order to have strong bunching

parameter at the nth harmonic, the energy modulation
must be at least equal to n times the energy spread: ∆γ =
nσγ . The total energy spread σγ,tot at the entrance of the
radiator reads:

σγ,tot =

√
σ2

γ +
(∆γ)2

2
. (6)

The radiator is tuned at the harmonic λ/n∗. Coherent
emission at such wavelength is driven by the correspond-
ing bunching coefficient, defined by equation (5) with
n = n∗. In other words, equations (5) and (6) define the
initial conditions at the radiator entrance.

The above model represents a paradigmatic example
of wave-particles interaction, where the direct coupling of

each element to every other element belonging to the sys-
tem has to be accounted for. The system is hence dom-
inated by mean-field effects, which constitute a specific
class of long range forces.

Numerical simulations based on system (1-3) show
that the amplification of the wave inside the radiator
occurs in several subsequent steps, see the curve in Fig-
ure 7. First, a quadratic growth takes place. Then, after
an exponential regime, the system attains a quasi sta-
tionary state, where the wave intensity displays oscilla-
tions around a well-defined plateau. As predicted by the
Boltzmann-Gibbs statistics, for longer times the system
relaxes toward the final (thermodynamical) equilibrium.
The process is driven by granularity and the time for
the relaxation to occur diverges with the system size N .
Hence, due to the constraint imposed by the typical length
of an undulator (several meters) and by the very large
number of particles (order of 1010), the QSS is the only
regime experimentally accessible in the case of single-pass
FEL’s.

When the system reaches the QSS, a portion of par-
ticles cluster in phase-space and give birth to a coherent
clump which rotates in the bucket created by the wave,
synchronized with the oscillations of the intensity. The re-
maining particles are uniformly distributed between two
oscillating boundaries, as shown in Figure 3 [10,11].

3 Statistical prediction in the Vlasov-Wave
framework

The initial growth and relaxation towards the QSS are
governed by the Vlasov equation [12], which is obtained
by performing the continuum limit, namely N → ∞ at
fixed volume and energy per particle, in the system of
equations (1-3):

∂f

∂z̄
= −p∂f

∂θ
+ 2(Ax cos θ −Ay sin θ)

∂f

∂p
, (7)

dAx

dz̄
= +

∫
f cos θ dθ dp, (8)

dAy

dz̄
= −

∫
f sin θ dθ dp. (9)
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Fig. 3. Top-left panel: Initial phase-space portrait. A water-bag distribution, i.e. particles uniformly distributed within a closed
support, is assumed. Top-right panel: Phase-space portrait at a later time. The presence of a dense core (macroparticle) is
clearly displayed. Bottom-left panel: Evolution of the radiation intensity along the undulator z̄. Bottom-right panel: Evolution
of the bunching parameter along the undulator.

The latter conserves the energy and the momentum per
particle.

In reference [4] it was shown that the average level of
the intensity at saturation and the bunching parameters
can be accurately predicted by performing a statistical me-
chanics treatment of the Vlasov equation, following the
prescriptions of the pioneering work by Lynden-Bell [6].
This entails the possibility of identifying the QSS, where
the discrete system gets trapped, with an equilibrium so-
lution of the associated continuous set of equations.

On a more general level, QSS’s manifest in many
systems with long-range interactions and their charac-
terization has originated an intense debate around the
necessity of developing novel theoretical interpretative
frameworks. In particular, the HMF model [2], a sim-
plified one-dimensional Hamiltonian scheme for the cou-
pled evolution of N rotators, has been widely employed
to test the correctness of different predictions. Particu-
larly interesting is the role played by the initial condi-
tions in driving the system towards macroscopically dif-
ferent QSS. In this respect, it was argued in [13] that ini-
tially homogeneous (un-bunched) conditions constitute a
rather special choice, against the broad class of spatially
inhomogeneous (bunched) distributions. Several numer-
ical works have then been devoted to investigating the
dynamical anomalies that supposedly arise when starting
with a bunched profile [14,15]. On a theoretical ground it
should be mentioned that homogeneous distributions cor-
respond to Vlasov stable equilibria, an argument invoked
in [16] to stress their specificity. As opposite to this vi-
sion, a unifying theoretical scenario was proposed in [5]
where the Lynden-Bell Vlasov based approach is success-

fully applied, irrespectively of the initial degree of particles
bunching.

We will here further contribute to the debate by nu-
merically monitoring the evolution of a FEL in CHG con-
figuration, which, as discussed in the previous section, is
characterized by a bunched beam at the entrance of the
radiator. The outcome of the simulations will be compared
to the Lynden-Bell prediction.

The basic idea underlying the Lynden-Bell ap-
proach [4,17] is to coarse-grain the microscopic single-
particle distribution function f(θ, p, t), which is filamented
by the dynamics. An entropy is then associated to the
coarse-grained function f̄ by counting the number of mi-
croscopic configurations giving rise to it.

Starting with an initial centered water-bag distribu-
tion, which corresponds to a rectangle uniformly occupied
in the phase space (θ, p):

f(θ, p, 0) =
{
f0 = 1/ (4θ0p0) if −p0 < p < p0 and −θ0 < θ < θ0
0 otherwise

(10)

the entropy can be expressed as [6,17]:

s(f̄) = −
∫ [

f̄

f0
ln
f̄

f0
+

(
1 − f̄

f0

)
ln

(
1 − f̄

f0

)]
dθ dp.

(11)
The equilibrium is computed by maximizing this entropy,
while imposing the conservation of the energy, momentum
and number of particles.
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Performing the analytical calculation one gets

f̄ = f0
e−β(p2/2+2A sin θ)−ηp−µ

1 + e−β(p2/2+2A sin θ)−ηp−µ
(12)

A =
√
A2

x +A2
y = −β

η

∫
sin(θ)f̄ (θ, p) dθ dp, (13)

where β/f0, η/f0 and µ/f0 are Lagrange multipliers,
which are determined by the conservation constraints.
From (13) one gets the estimates of the equilibrium values
for the intensity I and the bunching parameter bn.

As previously mentioned, in reference [4] the predic-
tions obtained from these calculations have been com-
pared to the numerical results for homogeneous initial
conditions [θ0 = π in Eq. (10)]. The agreement found is
remarkably good and provides an a posteriori validation
for the choice of the Vlasov statistical mechanics to de-
scribe the emergence of the QSS. We shall report in the
next sections about the extension to the inhomogeneous
(water-bag) initial condition.

4 Comparison with numerical results

The electron-beam phase space distribution at the en-
trance of the radiator can be approximated by a water-bag
distribution, similar to that specified by equation (10)1. In
this case, the spatial and energy widths, here labelled ψ0

and p0 respectively, follow from equations (5) and (6). La-
belling with b0 the bunching at the radiator entrance:

|b0| =
∫ ∫

f(ψ, p, 0) exp(iψ)dψdp =
sinψ0

ψ0
, (14)

where ψ = n∗θ is the phase label in the radiator (θ being
the phase in the modulator and dispersive section), which
is tuned at the harmonic λ/n∗. The momentum width of
the water-bag distribution is in turn defined in terms of
the initial beam parameters:

p0 =
σγ,tot

γρ
. (15)

The latter specifies the initial (conserved) energy per par-
ticle, h0, according to the following relation

h0 =
∫
p2

2
f(ψ, p, 0) dψ dp =

p2
0

6
. (16)

Numerical simulations are performed using the discrete
system (1-3). In Figure 4 the average intensity at satura-
tion is reported as function of |b0|, for different values of
the initial kinetic energy. Results are compared with the
analytical estimate obtained above. Analogous plots for
the average value of the bunching parameter at satura-
tion are reported in Figure 5. A direct inspection of the

1 The profile (10) represents a first order approximation of
the electron distribution at the exit of the modulator when one
neglects non-resonant particles and assume a uniform velocity
distribution.
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Fig. 4. Average intensity Ī at undulator exit as function of
the initial bunching |b0| for different values of the initial av-
erage kinetic energy, respectively a) h0 = 0.01 b) h0 = 0.16
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the theoretical predictions obtained in Section 3, while sym-
bols represent numerical results obtained averaging intensity
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Fig. 3) over ten different realization of initial conditions giving
the same ψ0 and p0.

0 0,2 0,4 0,6 0,8 1
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,2 0,4 0,6 0,8 1
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,2 0,4 0,6 0,8 1
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,2 0,4 0,6 0,8 1
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

|b
0
|

b

a)

c)

b)

d)

Fig. 5. Average values of the bunching parameter |̄b| at un-
dulator exit as function of |b0|. Same choice of parameters as
Figure 4.

figures confirms the adequacy of the proposed theoretical
framework: predictions based on the Vlasov theory cor-
relate well with numerical curves. Note that we are here
considering the general case in which |b0| and p0 are inde-
pendent parameters. The optimized case in which |b0| and
p0 are linked together trough the relation (∆γ = nσγ) [see
Eqs. (5), (6) and (15)] will be considered in the following.

The theory is sufficiently accurate for all the cases dis-
played in Figures 4 and 5, that is for any |b0| and for all
the energies below a critical threshold h0c � 0.315, where
the system experiences a dynamical transition.
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In fact, as it is shown in [3], when h0 > h0c the initial
state is stable for ψ0 = π, and the wave oscillates indefi-
nitely without getting amplified. The system is hence pre-
vented from eventually reaching the state predicted by the
statistical mechanics and, as a consequence of this purely
dynamical effect, the agreement is punctually lost. When
increasing the value of the nominal energy h0, the insta-
bility mechanism takes place only at larger value of b0 and
the agreement between theory and numerics progressively
deteriorates (data not shown).

As a further check of the theory, we focused on the
velocity distribution in the QSS. To this aim numerical
results are compared to prediction (12). Two curves rel-
ative to h0 = 0.16 and different values of the water-bag
spatial support ψ0 are displayed in Figure 6. For large
ψ0 (right plot in the figure), the agreement is excellent,
and the solid line (theory) interpolates correctly the nu-
merical histogram. To assess the goodness of fit both a
Kolmogorov-Smirnov and a chi-square tests have been
performed, under null hypothesis that the numerical sam-
ple comes from the Lynden-Bell distribution. The null hy-
pothesis is rejected at level which is estimated below 1%
for the Kolmogorov-Smirnov test and below 5% for the
chi-square test, thus confirming the adequacy of the pro-
posed theoretical approach. Conversely, when the initial
distribution becomes narrower, which in turn corresponds
to smaller values of ψ0 (i.e., to larger bunching), the dis-
crepancy between theory and numerics is enhanced. The
source of this disagreement can be identified by looking
at the evolution of the electron-beam phase space: when
starting with a relatively large bunching parameter, the
particle distribution gets more filamented during the ini-
tial violent relaxation and the cluster which asymptoti-

cally persists in the saturated regime tends to be more
localized (see Fig. 6). This dense core of particles results
in the central peak which appears in the velocity profile
for smaller ψ0, as shown in Figure 6. The presence of such
localized structure contradicts the mixing hypothesis as-
sumed within the Lynden-Bell scenario. However, the pre-
dictions for the quantities of interest, namely the average
intensity and the bunching parameter, are satisfactory. In-
deed, the presence of the macroparticle mainly influences
the oscillations of such quantities, their mean value being
correctly reproduced by the theory.

The theoretical analysis developed in this paper consti-
tutes a novel strategy to predict the intensity at saturation
for a CHG setting, provided the value of the incoherent
energy spread is assigned and without resorting to direct
numerical investigations. In fact, the knowledge of σγ en-
ables to directly calculate∆γ (= nσγ) and σγ,tot by means
of equation (6), and consequently estimate both |b0| and
p0, based on equations (14–15). The spatial width, ψ0, of
the initial water-bag distribution is finally derived by in-
verting relation |b0| = sin(ψ0)/ψ0. Once the values of ψ0

and p0 are specified according to the above strategy, the
theory of the violent relaxation outlined above allows to
quantitatively predict the saturated state of the system.

To validate the proposed theoretical framework,
we have considered the case of the CHG project
FERMI@Elettra [18] and focused in particular on the
experimental setting relative to the output wavelength
40 nm. In this case, n = 6 (i.e., the initial seed wavelength
is 240 nm), γ = 2310, σγ = 200 KeV and ρ � 2.8 × 10−3.
Direct numerical simulations are performed using GENE-
SIS [19], a three dimensional code that explicitly accounts
for the coupling between the transverse and longitudinal
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sections of 1 m. In the drifts the electron beam is refocused by
means of magnetic quadrupoles and the light is not amplified.

dimensions. Assuming a radiator length of 19 m, a hori-
zontal and vertical (normalized) beam emittance of 1.5 µ
m and an optical waist of w � 350 µm, simulations give
an output power of about 3 GW. The power evolution
along the radiator distance is shown in Figure 7, where
the statistical prediction is also displayed. The numerical
simulation correlates extremely well with the theory devel-
oped above, the disagreement being less than 10%. Such a
result validates the choice of a water bag to approximate
the more realistic (i.e., bell-shaped) electron-beam distri-
bution utilized by GENESIS at the undulator entrance.

5 Conclusions and perspectives

Results reported in this paper are of twofold interest.
On one hand, they provide a significant contribution to
the intense debate about the appropriate statistics to be
adopted for the description of long-range interacting sys-
tems. In this respect, we demonstrated that a maximum
entropy principle inspired to Lynden-Bell’s theory of “vi-
olent relaxation” for the Vlasov equation allows to satis-
factorily predict the quasi-stationary (saturated) state of
a single-pass FEL operated in CHG regime. These find-
ings confirm what has been recently demonstrated in [4]
and [5] in the context of the SASE FEL and of the HMF
model, respectively. Despite this success, we are aware
that Lynden-Bell’s method is not expected to be always
very precise, mainly due to incomplete relaxation of the

Vlasov equation. Collective effects may develop giving rise
to massive agglomeration, enhanced by local dynamical
traps. These mechanisms prevent perfect mixing to occur
and weaken the ergodic hypothesis on which the “violent
relaxation” theory is built. A more detailed analysis of
such phenomena will be the object of our future investi-
gation. On the other hand, the method we have developed
provides a powerful analytical tool that can be exploited
for the design of a single-pass FEL. Such a method is
presently limited to situations in which one can neglect
transverse effects. This happens when the electron-beam
geometrical emittance is smaller than the radiation wave-
length, the beam relative energy spread is smaller than the
Pierce parameter ρ and the Rayleigh length of emitted ra-
diation is much longer than the radiator length. This is
for instance the case of the whole spectral range that will
be covered by the FERMI@Elettra FEL (100–10 nm).

We thank J. Barré, T. Dauxois and S. Ruffo for fruitful dis-
cussions.
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Dauxois, S. Ruffo, Phys. Rev. E 75, 011112 (2007)
6. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967)
7. S Milton et al., Science 292, 2037 (2003)
8. L.H. Yu et al., Science 289, 932 (2000)
9. L.H. Yu, Phys. Rev. A 44, 5178 (1991)

10. A. Antoniazzi, G. De Ninno, A. Guarino, D. Fanelli, S.
Ruffo, J. Phys. 7, 143 (2005)

11. A. Antoniazzi, Y. Elskens, D. Fanelli, S. Ruffo Eur. Phys.
J. B 50, 603 (2006)

12. M.C. Firpo, Y. Elskens, J. Stat. Phys. 93, 192 (1998)
13. A. Pluchino, V. Latora, A. Rapisarda, Physica A 338, 60

(2004)
14. A. Pluchino, V. Latora, A. Rapisarda, Phys. Rev. E 69,

056113 (2004)
15. V. Latora, A. Rapisarda, C. Tsallis, Phys. Rev. E 64,

056134 (2001)
16. A. Rapisarda et al. Europhysics News 36, 2002 (2005)
17. P.H. Chavanis, J. Sommeria, R. Robert, Astrophys. J. 471,

385 (1996)
18. See http://www.elettra.trieste.it/FERMI/

19. http://pbpl.physics.ucla.edu/reiche/


